第(1/3)页 .” 会议室内。 看着面前的论文标题,薛其坤院士下意识做出了一个有些滑稽的举动: 只见他缓缓摘下眼镜,用指关节用力揉搓了两下眼睛,方才重新瞪大双眼望向了论文。 然后 嗯,那行字依旧没有任何变化: 《有关高温超导现象机理的探讨》。 见此情形。 砰砰砰—— 薛其坤院士那颗获得巴克利奖时都没怎么波动的大心脏,瞬间剧烈的跳动了起来。 在如今这个时代,超导概念对于很多人而言并不陌生。 物理上,超导是材料在低于一定温度时电阻变为0的现象,转变后的材料称为超导体。 上过高中的同学应该都知道。 在一个电路中,导线里的电荷在电压驱动下会像跑步运动员一样运动,从而形成电流,但经过导体的电阻会阻碍它们的运动。 如果电路由超导体组成,电荷就能在电路中自由自在地奔跑,电流会一直流动下去。 在一个超导铅制成的环路中,可以连续几个月都观测不到电流有减弱的迹象。 超导现象最早由昂内斯在1911年发现,他用液氦冷却汞,发现汞在-268.98°c时电阻变为零,从而推开了超导世界的大门。 从商业和科技角度上来说。 超导材料一旦能应用化,那么人类的科技将会迎来一轮全新的飞跃。 比如说输电领域,比如说家电设备,又比如说交通出行——那时候所有移动物体的轮都可以去掉了。 那时候一级方程式赛车锦标赛会被《星球大战》里的低空悬浮飞车比赛顶替,你能能开着悬浮车和悬浮船,到达这个世界上每一句角落. 不过可惜的是,理想很丰满,现实很骨感。 直到目前为止,超导体的实际应用还主要集中在粒子加速器、磁悬浮、超导量子干涉仪等特定情境中。 在电力工程方面,尤其是被寄予厚望的超导线长距离输电,大范围应用仍然遥遥无期。 而什么限制了超导体的大范围应用呢? 根本原因只有一个: 温度。 材料转变为超导体的温度被称为超导临界温度(t),低于这个t,超导体才能保持自身的超导性质。 然而,绝大多数材料的t都非常低,基本都在-220c以下,需要借助液氮或液氦等维持低温环境。 想象一下。 你辛辛苦苦建造了一条几百公里的超导输电线,还需要全程浸泡在液氮中冷却,成本得多么夸张. 所以为了让超导体得到更广泛的应用,必须要找到t更高、最好是室温条件下(大约25c左右)也能保持超导性质的材料。 从发现超导现象开始,物理学家对高t超导体的寻找从未停止,但一直举步维艰。 在发现超导最开始的70多年内,t的上限连突破-240c都很困难。 还好后来物理学家陆续发现t超过-173c的超导体,目前超导体最高临界温度的记录保持者是150万个大气压下的硫化氢,t大约是-73c,离理想的室温还是有一定距离,如此高压的条件也意味着难以实际应用。 第(1/3)页